If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-384=0
a = 6; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·6·(-384)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*6}=\frac{-96}{12} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*6}=\frac{96}{12} =8 $
| 2(y-5)-(y+6)=7 | | 2(h-8)-5=5-16 | | -13+11=-2(x+9) | | 2d-8=-16+6d | | 1/4(y+2)=7 | | (4x-18)=(3x+4) | | 5w^2-405=0 | | 3|x-4|+1=11 | | 10=2(q+4) | | 0.6=0.4x | | b+3/3=2 | | 17+3=-5(3x-4) | | 8d+8=-32 | | x^2+86x+12=0 | | 2(5x+5)=-26+6 | | 3y+2=7y | | t/6+12=16 | | 6n-3=42 | | 4+u=9 | | 5x+3=-3x-7 | | 2x+20=9x+41 | | H=4.9t^2+11t+1.5 | | 3(x-5)=5x-1x(3-x) | | b+3/3= 2 | | 8b+4=4(8b+7) | | x4=7 | | 0.75(x+40)=0.35(x+20)+0.36 | | x^2*(0,03+0,05*x)=3 | | 3x^2+4-20=0 | | 11+3x=-0.58 | | x^2*(0,03+0,05*T)=3 | | 4*a=416 |